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A semi-analytic model is used to assess the accuracy of a finite-difference model for 
computing lake currents. Both models solve the vorticity equation for two-dimensional, time- 
dependent flow to compute currents in a circular lake with a parabolic depth profile. The 
semi-analytic solution is obtained by using separation of variables to remove the azimuthal 
dependence and reduce the equations in cylindrical coordinates to a single equation in two 
variables, time and radius. This equation is then solved by a finite-difference technique for grid 
sizes small enough that the solution appears to converge. Comparison with the rectangular 
linite-difference solution shows a strong improvement in accuracy with decreasing grid size. It 
is found that about 20 grid points across a lake basin are required to adequately resolve wind- 
driven flow. ( 1987 Acddemlc Press. Inc 

1. INTRODUCTION 

One of the major uses of the numerical calculation of fluid flow is the 
understanding of flow subject to time dependent forcing in complex geometries. 
However, the accuracy of these calculations is usually estimated by comparison 
with solutions for very simple flows which can be calculated by analytical methods. 
For example, there is a large body of literature on the accuracy of methods for solv- 
ing the one-dimensional advection equation in an infinite domain, but very few 
papers on two-dimensional accuracy tests. The reason for this gap is that it is dif- 
ficult to find exact solutions for complex flows. 

One way to combat the lack of exact solutions is to develop combined analytical 
and numerical methods which generate approximate, but not closed form solutions. 
This paper uses this method to assess the accuracy of a lake circulation model. The 
most relevant exact solutions are those of Lamb [8] and Ball [ 121; however, these 
are limited to frictionless flow in a basin which has zero depth at the shore-a very 
difficult numerical problem and not very relevant to practical models. 
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The semi-analytical method used here is fairly elaborate because it was originally 
developed to study the dynamics of lake circulation; i.e., it is a lake circulation 
model in its own right. This model was used in [l] to study the nonlinear effects of 
the large thermocline displacements and currents observed in Lake Ontario and in 
[2] to study the general problem of wave rectification in lakes and to apply it to 
Lake Kinneret (the Sea of Galilee). In these papers a two-layer model was carried 
out to second order in amplitude. In the first paper, the model was driven by obser- 
ved winds; in the second it was driven by periodic winds to simulate the very 
regular observed diurnal pattern of wind forcing. 

One of the conclusions of the Lake Ontario study was that grid resolution was 
very important. For poor resolution, the nonlinear terms were underestimated; this 
was particularly true near the coast, where the currents and thermocline dis- 
placements were greatest. 

To isolate the role of grid resolution in a barotropic rigid lid model we use a 
reduced version of the equations; nonlinear terms and the density variations are 
ignored. The major source of numerical error in it is the approximation of the coast 
by a finite-difference grid. 

It is of practical importance to understand the errors in this simple model 
because it is used in the realtime prediction of currents and spill trajectories in the 
Great Lakes [3]. The accuracy of the model must be weighed against the uncer- 
tainties in the driving forces, the uncertainties in the initial positions of spills or 
wrecks, and the need for fast response. 

2. THE LAKE CIRCULATION MODEL 

The most fundamental model assumption is that the water is homogeneous. This 
limits the applicability of the model since currents driven by density gradients can 
be a significant factor in determining the circulation patterns. Density driven 
currents are most common in the Great Lakes during the spring and summer 
months when there are large vertical and horizontal temperature gradients. 

Momentum advection and lateral friction are assumed to be negligible. 
According to [ 1 ] and [2 3, momentum advection is more important during the 
stratified period and its effects are usually less important in the short simulations 
required by the operational model. The consequence of neglecting lateral friction is 
that, at the shore, only the normal component of velocity is zero. This is a 
reasonable assumption because for the shoreline depths used here the observed 
longshore current speeds are high. 

For all the calculations in this paper, a Coriolis parameter of 10P4 s-l, a value 
typical of mid-latitudes, was used. The time step used is 1 h, a value low enough 
that there are no significant time stepping errors. The time step limit for com- 
putational stability is proportional to f -l; its exact magnitude depends on the nor- 
mal mode frequencies of the system. The exact solution of the normal modes of an 
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elliptic paraboloid given in Lamb [S] shows that the minimum period is 671/f. With 
the above values off and A:, there are at least 50 time steps per period. 

The shape and bathymetry of the lake is represented by an array of square grid 
boxes. For the circular paraboloid model lake (Fig. l), a bathymetric grid was 
generated for three grid sizes: 10, 5, and 2.5 km. These values correspond to 10, 20, 
and 40 grid points across the diameter. An elementary grid box and the outline of 
the three grids is given in Fig. 2. Water depth is defined at the center of the grid 
box, the x-component of transport (U) is defined at the center of the east and west 
sides, and the y-component of transport (V) is defined at the center of the north 
and south sides. The stream function is defined at the corners of each box. The 
depth is also linearly interpolated to the corners where necessary. 

In the operational model, the rigid-lid approximation is used for three reasons. 
First, the currents in the gravitational oscillations filtered out by it are weak in 
most areas of the Great Lakes. Second, because a large time step can be used, it 
requires less computer time. Third, for low frequency currents, the effects of the 
Earth’s rotation are calculated more accurately. The reason for this is that in free 
surface models using the staggered grid employed here, the Coriolis terms must be 
averaged over four grid points. When these equations are analyzed in the limit of 
large values of gravity, it can be shown that this is equivalent to approximating the 
Jacobian derived below by Arakawa’s [4] finite-difference formula labeled .I,. Ben- 
nett and Schwab [S] showed that this formula is not accurate; it even allows some 
waves to travel in the wrong direction. 

A C 

Cl B 

-100 km- 

FIG. 1. Plan and cross section views of a circular paraboloid lake. A, B, and C are the locations of 
the transports plotted in Fig. 4. 
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FIG. 2. Pictorial representation of the grid box and lake outlines for each of three grid sizes: 10, 5, 
and 2.5 km. Water depth (D) is delined at the center of the grid box, the x-component of transport (Li) 
is defined at the center of the right side, and the y-component of transport (V) is at the center of the top. 
Stream function ($) is defined at the corners. 

With this approximation, conservation of mass requires the flow to be non- 
divergent, 

dl/+eV=O, 
ax ay (1) 

where U = jf u dz and V= st u dz are the depth-integrated currents-the mass 
transports. This constraint allows the two transport components to be expressed in 
terms of a single variable, $, the stream function. The transports are then 

A further consequence of the rigid-lid approximation is that the two momentum 
equations [l] can be combined into a single equation for Ic/, 

where 

J(IcI D-,)=2aD-l a$ aD-1 -____ 3 ax ay ay ax 

(3) 

is the Jacobian of the inverse depth and the stream function. 

581.68%2 
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In this equation for 1+9, D is the depth; f is the Coriolis parameter (f= 252 sin 4, 
where Q is the angular speed of rotation of the earth and 4 is the latitude); p is 
water density (assumed uniform); r;, r; are the x, y components of the wind stress 
vector; and rt, 5; are the x, y components of the bottom stress vector. The boun- 
dary condition is that there be no transport normal to the shoreline; thus $ is set 
equal to zero there. 

The prediction equation for the stream function is 

V.D-‘VIC/“+‘-V.D-‘V,+$” 

At 
+fJ($“, D-l) 

=2’t-as-c,.SPD, 
axPD 8YPD P 

(5) 

where the operator 

(-,,)J Yfl+( 1” 
2 

C, is the drag coefhcent and SPD is the average current speed. The values of Cd 
and SPD were taken to be 0.002 and 0.10 ms - ‘, respectively. The time differencing 
in the above equation follows the trapezoidal rule and results in an implicit 
representation of II/” + ‘. This does not increase the computational work since the 
solution can be combined with the relaxation procedure required to convert vor- 
ticity to streamfunction. In this equation, the vorticity and transport components 
are evaluated with elementary second-order difference formulas, with appropriate 
two-point averages to compute De’ at points other than at stream function points. 
The Jacobian, term is evaluated according to Arakawa [4] method number 5, as 
follows: 

AsJ(t,G, D-‘) 

Further details of this model and the computer programs are documented in [6]. 
In order to isolate the effects of grid resolution in this model, we have held the 

potential effects of other variables to a minimum. To do so, we have chosen to 
apply a uniform wind stress. A constant wind stress of 0.1 nt me2 from the west was 
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applied for a period of 1 day. For the next 4 days, the wind stress was zero. This 
wind stress pattern is representative of a typical Great Lakes storm. 

In Fig. 3a the stream function patterns for the finest gridsize are plotted every 6 h 
for the first day, during which the wind stress was 0.1 nt m -* from the west (left). 
Initially, the flow agrees with Bennett’s theory [7]. The flow is aligned with the 
wind, the shallow water going in the direction of the wind and the deep water mov- 
ing in the opposite direction; the magnitude increases linearly with time. Thus, 
there is one clockwise gyre and one counterclockwise gyre, a pattern that persists 
throughout the complete simulation. The effect of the Coriolis force is to cause the 
gyres to move counterclockwise around the basin in the manner of the normal 
modes of a circular paraboloid given in [S, Sect. 2121. 

In Fig. 3b the stream function patterns are plotted every day for 4 days after the 
wind stress is set to zero. The flow magnitude immediately begins to decrease from 
the maximum reached at 1 day. Because the friction term is more significant in the 
shallow water, the gradient decreases faster there than in the deep water. In 
addition, the gyres continue to travel counterclockwise around the shore as they 
decay. The period of this free motion agrees with the theoretical value for the fun- 
damental mode from [8] of 5.1 days. This solution is very realistic. Analytical 
models similar to this have been used to interpret observations in Lake Ontario [9] 
and Lake Michigan [lo]. In addition, Schwab [ 1 l] has run the numerical model 
used here with realistic Lake Michigan topography and observed winds and found 
that computed current fluctuations agree well with observed current fluctuations in 
the l- lo-day period range. 

3. ACCURACY OF THE CIRCULATION MODEL 

A model using the same assumptions was used to calculate a more rigorous 
numerically convergent solution. Assuming D is independent of the azimuthal coor- 
dinate, 8, Eq. (3) in cylindrical coordinates is 

-+---=---AT?-, ---+-- az f ao a* a rzg 
( 

a r a$ i a*$ 
at D* ar a0 ar D a6 D Jr D* ar rD* iW* ’ 

where 

z-a ra* i a** 
at-D&-+%?!@' 

(8) 

Because the equation is linear and the wind stress is uniform, Eq. (8) can be sim- 
plified by separation of variables and $ can be written 

Il/(r, 8, t) = Ic/=(r, t) cos 8 + ill/Jr, t) sin 13. (10) 

Substitution of this expression into Eqs. (8) and (9) and application of the 
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FIG. 3. (a) Stream function patterns every 6 h for the first day, during which the wind stress was 
from the west (left). Solid lines represent counterclockwise flow; dashed lines indicate clockwise 
flow. (b) Stream function patterns every day for 4 days after the wind stress is set to zero. 
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FIG. 4. (1~) Solutions for eastward ((I) and northward (V) transport for three locations 
(labelled A, B, and C in Fig. 1) compared to semi-analytical solutions for three grid resolutions (10, 5, 
and 2.5 km). Dashed line is the exact solution. Solid line is the finite-difference solution. 
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trapezoidal rule for time differencing yield a complex tridiagonal matrix equation 
for the variable +, + ill/,. This equation is diagonally dominant as long as the quan- 
tity f. At is small and is solved by the standard tridiagonal algorithm. As stated 
earlier, At is 1 h for all calculations and time differencing errors were negligible. 

Solutions were calculated for grid sizes of 10, 5, 2.5, and 1.25 km (10, 20, 40, and 
80 grid points per diameter). Since the last three solutions for $ and its radial 
derivatives are nearly identical, we conclude that the method has converged and 
that the solution is accurate. 

After varying only the grid resolution of the bathymetry used as input to the 
finite difference model, the solutions for eastward and northward transport were 
compared to the accurate solution. Results of this comparison are shown in Fig. 4 
at the locations labelled A, B, and C in Fig. 1. 

The low-resolution (10 km) grid solution compares favorably to the accurate 
solution only for the first day, during wind stress. After the first day, the lo-km-grid 
solution decays much more rapidly than it should. The natural period appears to be 
much longer since the gyres do not respond as rapidly as they should. Even in the 
middle of the lake, the stream function values of the solution do not match those of 
the accurate solution. The lo-km grid solution is not very accurate. The 5-km grid 
solution is considerably better, and the 2.5-km grid resolution is closer to an exact 
fit. 

4. SUMMARY 

The objective of this paper was to assess the accuracy of a finite-difference techni- 
que for computing lake currents. To do so the currents in a lo-km-diameter lake 
of parabolic depth profile were calculated for three different grid sizes (10, 5, and 
2.5 km). The simulated time span was 5 days with a uniform wind stress being 
applied for only the first day. The solutions for this test case were compared to a 
numerically convergent solution from a model using the same physical assumptions. 
The effects of the grid size became most apparent after the wind stress had been 
removed and the general two-gyre circulation pattern began to oscillate and decay. 
The lo-km grid (10 grid points per diameter) solution was poor, the 5-km (20 grid 
points per diameter) solution acceptable, and the 2.5-km (40 grid points per 
diameter) solution was not significantly different from the accurate solution. Thus, 
at least 20 grid points are required across a lake basin to adequately resolve wind 
driven flow in a homogeneous model of the dimensions of the Great Lakes. 
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